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ABSTRACT

Consider the first-order linear delay differential equation
') +p()z(r(t)) =0, t=to, (1)

where p, 7 € C([tg, 00), RY), 7(t) is non-decreasing, 7(t) < t for t > ¢, and
Lt o 7it) = 00,

The most interesting oscillation criteria for Eq.(1), especially in the case
where

t t
0 < lim inf p(s)ds < E and lim Sup/ p(s)ds < 1,

t=oe Jre) : tmoe Jr(y)

are presented.
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1 Introduction

The problem of establishing sufficient conditions for the oscillation of all
solutions to the differential equation

2'(t) + p(t)z((2)) =0, t=to, (1)

where the functions p.7 € C([tg,00),R*) (here R™ = [0,00)), 7(¢) is non-
decreasing , 7(t) < t for ¢ > ¢y and lim;_ ., 7(¢) = oc, has been the subject of
many investigations. See, for example, [1-49] and the references cited therein.

By a solution of Eq.(1) we understand a continuously differentiable func-
tion defined on [7(75), o0) for some Ty > t¢ and such that (1) is satisfied for
t > Ty. Such a solution is called oscillatory if it has arbitrarily large zeros,
and otherwise it is called nonoscillatory.

In this paper our main purpose is to present the state of the art on the
oscillation of all solutions to Eq.(1) especially in the case where

t i
0 < liminf p(s)ds < E and limsup/ p(s)ds < 1.

tmee Jr) < t—oo  Jr(1)

2 Oscillation Criteria for Eq. (1)

The first systematic study for the oscillation of all solutions to Eq.(1) was
made by Myshkis. In 1950 [33] he proved that every solution of Eq.(1)
oscillates if

limsup(t — 7(¢)] < oo and liminf[t — 7(t)] li{ninfp(t) = %. (Cy)

t—oo t—oo
In 1972, Ladas. Lakshmikantham and Papadakis [24] proved that the

same conclusion holds if

t
A:= Iimsup/ p(s)ds > 1. (Cs)

{—oo (t)



In 1979, Ladas [23] established integral conditions for the oscillation of
Eq.(1) with constant delay. Tomaras [42-44] extended this result to Eq.(1)
with variable delay. For related results see Ladde [27-29]. The following most
general result is due to Koplatadze and Canturija [18].

If

t
[ L.
o := liminf p(s)ds > -, (Cs)
then all solutions of Eq.(1) oscillate; If
¢ 1
limsup/ p(s)ds < -, (N7)
t—os Jr() €

then Eq.(1) has a nonoscillatory solution.

In 1982 Ladas, Sficas and Stavroulakis [26] and in 1984 Fukagai and
Kusano [10] established oscillation criteria (of the type of conditions (Cs)and
(Cs)) for Eq. (1) with oscillating coefficient p (2).

It is obvious that there is a gap between the conditions (C2) and (Cs)
when the limit lt]inojo f:(t) p(s)ds does not exist. How to fill this gap is an
interesting problem which has been recently investigated by several authors.

In 1988, Erbe and Zhang [9] developed new oscillation criteria by em-
ploying the upper bound of the ratio z(7(¢))/z(t) for possible nonoscillatory
solutions z(t) of Eq.(1). Their result says that all the solutions of Eq.(1) are
oscillatory, if 0 <o < ¢ and

"

A>1—Z'. (Ca)

Since then several authors tried to obtain better results by improving the
upper bound for z(7(t))/z(t).
In 1991, Jian [16] derived the condition

a2

M7 (CEJJ

A>1-

while in 1992, Yu and Wang [47] and Yu, Wang, Zhang and Qian [48] obtained

the condition :
T — _
PRSEE N fe S (Cs)




In 1990, Elbert and Stavroulakis [6] and in 1991 Kwong [22], using dif-
ferent techniques, improved (Cj), in the case where 0 < a < %, to the
conditions

e—

1 2
A>1—(1—\/)\_1) (C7)
and X i
o BYT L (Cs)
A1

respectively, where J; is the smaller real root of the equation A = e**.

In 1994, Koplatadze and Kvinikadze [19] improved (Cs), while in 1998,
Philos and Sficas [34] and in 1999, Zhou and Yu [49] and Jaros and Stavroulakis
[15] derived the conditions

2

o o
A>1 — —mM8M — —) G
= Sl —c) 5 L (Cs)
] =g—f] — Pr—ice? 1
A>1- s ) e (8
2 ( \/}\—1) ( 10)
and
InM+1 l1l-a-+v1-2a-a
A bt = : (Cn)
A1 2
respectively.

Consider Eq.(1) and assume that 7(¢) is continuously differentiable and
that there exists # > 0 such that p(7(¢))7'(¢) > 0p(t) eventually for all ¢.
Under this additional condition, in 2000, Kon, Sficas and Stavroulakis [17]
and in 2003, Sficas and Stavroulakis [35] established the conditions

ln)\1+1_1—a—\/(1—a)2—46

A>
X 2

(2.1)

and

Sl 1+vT+29 2001

A A1 D8

(2:2)

respectively, where

gMia _ A fg— 1

O= "2
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and

l1—a—4/(1-a)?-40
= :

M=

Remark 2.1. ([17], [35]) Observe that when 6 = 1, then © = ’\‘—‘)\’\112‘*—‘1.,
and (2.1) reduces to

A>20+2-1 {Ciz)
A

while in this case it follows that M =1-a — 5= and (2.2) reduces to

> 111)\1—1+\./5"2.)\1+2OZA1

A
A

(C1s)

In the case where a = 2, then A; = ¢, and (Ci3) leads to

VT — 2e
e

A> ~ (0.459987065.

It is to be noted that as oo — 0, then all the previous conditions (Cy) —
(C12) reduce to the condition (Cs), i.e.

A>1.
However, the condition (C13) leads to
A>+3-1=0.732,

which is an essential improvement. Moreover (Cj3) improves all the above
conditions when 0 < a < % as well. Note that the value of the lower bound
on A can not be less than

~ 0.367879441.

| =

Thus the aim is to establish a condition which leads to a value as close as
possible to 1. For illustrative purpose, we give the values of the lower bound
on A under these conditions when a = %



0.966166179
0.892951367
0.863457014
0.845181878

AQQQNQQ

—
o
S ew e e el e

( 0.735758882
( 0.709011646
(Cio):  0.708638892
(Ci1):  0.599215896
(Cia):  0.471517764
(Ci3):  0.459987065

We see that the condition (C)3) essentially improves all the known results
in the literature.

Example 2.1. ([35]) Consider the delay differential equation
1
z'(t) + pz(t — gsin® vz — 55) =

where p >0, ¢ >0 and pg = 0.46 — 1. Then

! 1 1
a = liminf pds=1itminfp(qsin2\/f+—) = -

e Jae) g

and

t

1 1

A=Ilm sup/ pds = limsup p(gsin® v/t + —) =pg+ - = 0.46.
t—oc 7(t) t—oo pe €

Thus, according to Remark 2.1, all solutions of this equation oscillate. Ob-

serve that none of the conditions (Cy)-(C12) apply to this equation.

Following this historical (and chronological) review we also mention that
in the case where
t

’ 1 1
/ p(s)ds > - and lim p(s)ds = -

) = Jr(2)

this problem has been studied by Domshlak [2], Elbert and Stavroulakis [7],
Kozakiewicz [20], Li [31,32], Domshlak and Stavroulakis [5], Tang and Yu
[40], Yu and Tang [46] and Tang, Yu and Wang [41].
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In 1986, Domshlak [2] first observed the following special critical situation:
Among the equations of the form

@) +pt)z(t—71)=0, t=>tg, (1)
with 3
fim p(t) = —

there exist equations such that their solutions are oscillatory in spite of the
fact that the corresponding “limiting” equation

1
')+ —z(t—7)=0, t>t
z'(t) + Te:c( 7) 2 to
admits a non-oscillatory solution, namely z(t) = e~*/".

In 1996, Domshlak and Stavroulakis [5] obtained the following results in
the special critical case liminf, ,. p(t) = 1/7e.

Theorem 2.1. ([5]) (i) Assume that

liminf p(t) = i, li%n inf {(p(t) - i) tQ} — 8_7;2’

t—o0 TE

1 T T
T . 2l 2 i
ltril»gf { {(p(t) 're) Se:| ko t} ~ 8e

Then all solutions of Eq. (1)’ oscillate.
(ii) Assume that for sufficiently ¢

o)<+ (1+42).
Te  8et? et

Then Eq. (1)’ has an eventually positive solution.

and

In 1998 Diblik [1] generalized this theorem as follows:
Set ].Il]_ = ll'lt, ].Il]c_;_lt = ln(hlk t), B= l, 2, i

Theorem 2.2. ([1]) (i) Assume that for an integer k£ > 2 and a constant

g>1

1
pt) > —+ —— |1+ (Im )2 + (Iny tlnp t) ™2 + - - -

Te  8et?




+(Inytlnot - In, 1 8) 2 +0(In; tlngt - - - Iny, t) 72|, as ¢ — oo.

Then all solutions of Eq. (1) oscillate.
(ii) Assume that for a positive integer &

1 1 .
p(t) < —f 1+ (0 8)2 + (Iny tlnp )2+ -+ - + (Ing tlnp ¢+ - In 1) 77

ast — oo.

Then there exists a positive solution z = z(t) of Eq. (1)’. Moreover

Z(t] < e Vitlntlngt..Ingt, as t — oo.

Definition 2.1. ([7]) The piecewise continuous function p : [tg, c0) —
[0, oc) belongs to A, if

i
1.
f p(s)ds > - for sufficiently large t
7(¢)
and
t 1 teyy 1

f p(s)ds—= > Ag (/ p(s)ds — —) for H-<b< by, k=12,

(t) e te €
for some A > 0, and liminfi_,oo A\p = A > 0.

In 1995, Elbert and Stavroulakis [7] proved the following theorem.

Theorem 2.3. ([7]) Assume that 7(¢) is strictly increasing on [ty, co) and
that p(t) € A, for some A € (0,1] and either

= & 1 2
Alimsup k& s)ds——) > - 2.3
msup z_j(/pm )22 ey
or o
Aliminfk ) /ti p(s)ds-l = i, (2.4)
koo 2\ J e 2e

Then all solutions of Eq.(1) oscillate.



In [7], Elbert and Stavroulakis put forth the following open problem.

Open Problem 2.1. Whether or not the upper bounds in the conditions
(2.3) and (2.4) of Theorem 2.3 can be replaced by smaller ones.

In 2000, Tang and Yu [40] and in 2001, Yu and Tang [46] gave an answer
to this open problem by improving the above conditions (2.3) and (2.4) as

follows: ;
= i 1 1
Alimsup k slds — - | > - 2.3)
msup g(fpu )> 2 (23)
and
Miminf kS ([ pls)as— 1) > L (2.4)
im in ; ths s . >88' 2.
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